Contains Nonbinding Recommendations

Draft Guidance on Beclomethasone Dipropionate

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

Active Ingredient: Beclomethasone dipropionate

Dosage Form; Route: Aerosol; metered; inhalation

Strength:
- 0.04 mg/INH
- 0.08 mg/INH

Recommended Studies: In vitro and in vivo studies

FDA recommends the following in vitro and in vivo studies to establish bioequivalence (BE) of the test (T) and reference (R) metered dose inhalers (MDIs) containing beclomethasone dipropionate.

In Vitro Studies

FDA recommends that applicants conduct the following in vitro studies for both strengths of the T and R products. For each strength, use at least three batches1 each of T and R products, with no fewer than 10 units from each batch.

1. Type of study: Single actuation content (SAC)
 Design: The SAC test should be performed at the beginning (B), middle (M), and end (E) lifestages2 of the product, using a flow rate of 28.3 L/min. U.S. Pharmacopeia (USP) <601> Apparatus A or another appropriate apparatus may be used to determine the SAC using a validated assay. The number of actuations per determination should be one.

 Equivalence based on: Population bioequivalence (PBE) analysis of SAC. Please refer to the draft Budesonide Inhalation Suspension BE Guidance for additional information regarding PBE.3

2. Type of study: Aerodynamic particle size distribution (APSD)
 Design: The APSD test should be performed at the B and E lifestages of the product using a flow rate of 28.3 L/min or 30 L/min. The USP <601> Apparatus 1, Apparatus 6, or another appropriate method may be used to determine APSD using a validated assay.

1 A single batch of solution can be split-filled into three equal size sub-lots of product. The sub-lots should be prepared from three different batches of the same device (metering valve and actuator) components.

2 Based on the labeled number of actuations, the terms, B lifestage, M lifestage, and E lifestage represent the first actuation(s) following the labeled number of priming actuations, the actuation(s) corresponding to 50 percent of the labeled number of actuations, and the actuation(s) corresponding to the labeled number of actuations, respectively.

Recommended Jan 2016
The APSD determination of each unit should be performed with a minimum number of inhalations justified by the sensitivity of the validated assay. Additional comments: Drug deposition on individual sites, including the mouthpiece adapter, the induction port, each stage of the cascade impactor (CI), and the filter, is requested. Mass balance accountability should be reported based on the sum of all deposition sites. For electronic submission of the individual CI data for the T and R products, please provide a table using the format in the appendix, and send them as part of the abbreviated new drug application (ANDA) submission for BE evaluation.

Equivalence based on: PBE analysis of impactor-sized mass (ISM). The CI profiles representing drug deposition on the individual stages of the CI along with the mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD) and fine particle mass (FPM) should be submitted as supportive evidence for equivalent APSD.

3. Type of study: Spray pattern
 Design: The spray pattern test should be performed at the B lifestage of the product and at two different distances from the actuator orifice. The selected distances should be at least 3 cm apart and based on the range of 3 to 7 cm from the R actuator mouthpiece. Impaction (thin-layer chromatography plate impaction), non-impaction (laser light sheet technology), or other suitable method may be used to determine the spray pattern. Additional comments: Spray pattern should be measured quantitatively in terms of ovality ratio and area within the perimeter of the true shape (to include a high proportion, e.g., 95% of the total pattern) for the automated analysis or ovality ratio and Dmax for the manual analysis. Ovality ratio is defined as the ratio of Dmax to Dmin. Dmax and Dmin are the longest and shortest diameters, respectively, that pass through the center of mass or the center of gravity, as appropriate. The number of sprays per spray pattern would preferably be one.

Equivalence based on: At two selected distances, (i) qualitative comparison of spray shape, and (ii) PBE analysis of ovality ratio and area within the perimeter of the true shape or ovality ratio and Dmax.

4. Type of study: Plume geometry
 Design: The plume geometry test should be performed at B lifestage of the product. The time sequence sound-triggered flash photography method, laser light sheet technology, or other suitable method may be used to determine the plume geometry at the appropriate post-actuation delay time. Additional comments: Plume geometry measurements should be reported at a single delay time while the fully developed plume is still in contact with the actuator mouthpiece. Plume geometry should be measured quantitatively in terms of plume angle and width. The plume angle is based on the conical region of the plume extending from a vertex that occurs at or near the actuator mouthpiece. The plume width is measured at a

4 ISM is defined as a sum of the drug mass on all stages of the CI plus the terminal filter, but excluding the top CI stage because of its lack of a specified upper cutoff size limit.

5 The distance between the actuator orifice and point of spray pattern measurement should be same for T and R.
distance equal to the greater of the two distances selected for characterization of the spray pattern.

Equivalence based on: Ratio of the geometric mean of the three batches of T to that of the three batches of R (based on log transformed data) for plume angle and width, which should fall within 90 - 111%.

5. Type of study: Priming and repriming
 Design: Priming and repriming tests should be based on the emitted dose (ex-actuator) of a single actuation immediately following the specified number of priming or repriming actuations specified in the R product labeling. The repriming test should be performed following storage for the specified period of non-use after initial use and/or other conditions (e.g., dropping), if the R product labeling provides such repriming information.
 Additional comments: For BE evaluation, the priming and repriming tests should be based on products stored in the valve upright position, with the exception of MDIs for which the R labeling recommends storage in the valve down position. The priming data can be based on the SAC data at the B lifestage.

 Equivalence based on: PBE analysis of the emitted dose of a single actuation immediately following the specified number of priming or repriming actuations specified in the R product labeling.

Pharmacokinetic (PK) BE Study
FDA recommends that applicants conduct the following pharmacokinetic (PK) BE study for both strengths of the T and R products.

6. Type of Study: Fasting
 Design: Single-dose, two-way crossover
 Dose: Minimum number of inhalations that is sufficient to characterize a PK profile by using a sensitive analytical method
 Subjects: Normal healthy males and non-pregnant females, general population
 Additional comments: Subjects enrolled for in vivo studies should be trained in the use of the inhalation aerosols in a standard fashion, prior to each treatment session, to assure a relatively consistent inspiratory flow rate and inspiratory duration. The subjects should adhere to labeling as follows: “Rinse your mouth with water after each dose.” A Bio-IND is required prior to conduct of the PK study if the dose exceeds the maximum labeled single dose.

 Analyte(s) to measure (in appropriate biological fluid): Beclomethasone dipropionate and Beclomethasone 17-monopropionate (active metabolite) in plasma

 Equivalence based on: AUC and C_{max} for Beclomethasone 17-monopropionate. The 90% confidence intervals for the geometric mean T/R ratios of AUC and C_{max} should fall within the limits of 80.00 - 125.00%.
Clinical Pharmacodynamic BE Study
FDA recommends that applicants conduct the following clinical pharmacodynamic study for the lowest strength of the T and R products.

7. Type of Study: BE study
 Design: A randomized multiple-dose, placebo-controlled, parallel group design, at minimum consisting of a 2-week run-in period followed by a 4-week treatment period of the placebo, T or R product
 Strength: 0.04 mg/INH
 Dose: 0.04 mg/INH; one inhalation twice daily
 Additional comments:
 Inclusion criteria should, at minimum, include:
 a) Adult male or female subjects of non-childbearing or of childbearing potential committing to consistent and correct use of an acceptable method of birth control.
 b) Diagnosis of asthma as defined by the National Asthma Education and Prevention Program\(^6\) at least 12 months prior to screening.
 c) Pre-bronchodilator FEV1 of \(\geq 45\%\) and \(\leq 85\%\) of predicted value during the screening visit and on the first day of treatment.
 d) \(\geq 15\%\) and \(>0.20\) L reversibility of FEV1 within 30 minutes following 360 mcg of albuterol inhalation (pMDI).
 e) Patients should be stable on their chronic asthma treatment regimen for at least four weeks prior to enrollment.
 f) Currently non-smoking; had not used tobacco products (i.e., cigarettes, cigars, pipe tobacco) within the past year, and having had \(\leq 10\) pack-years of historical use.
 g) Ability to replace current short-acting β agonist (SABAs) with salbutamol/albuterol inhaler for use as needed for the duration of the study. Subjects should be able to withhold all inhaled SABAs for at least six hours prior to lung function assessments on study visits.
 h) Ability to discontinue their asthma medications (inhaled corticosteroids and long-acting β agonists) during the run-in period and for remainder of the study.
 i) Willingness to give their written informed consent to participate in the study.

 Exclusion criteria should, at minimum, include:
 a) Life-threatening asthma, defined as a history of asthma episodes(s) requiring intubation, and/or associated with hypercapnia, respiratory arrest or hypoxic seizures, asthma related syncopal episode(s), or hospitalizations within the past year prior to the screening or during the run-in period.
 b) Significant respiratory disease other than asthma (COPD, interstitial lung disease, etc.)

c) Evidence or history of clinically significant disease or abnormality including congestive heart failure, uncontrolled hypertension, uncontrolled coronary artery disease, myocardial infarction, or cardiac dysrhythmia. In addition, historical or current evidence of significant hematologic, hepatic, neurologic, psychiatric, renal, or other diseases that, in the opinion of the investigator, would put the patient at risk through study participation, or would affect the study analyses if the disease exacerbates during the study.

d) Viral or bacterial, upper or lower respiratory tract infection, or sinus, or middle ear infection within four weeks prior to the screening, during the run-in period, or on the day of treatment.

e) Hypersensitivity to any sympathomimetic drug (e.g., albuterol) or any inhaled, intranasal, or systemic corticosteroid therapy.

f) Patients receiving β_2-blockers, anti-arrhythmics, anti-depressants, and monoamine oxidase inhibitors within 4 weeks prior to the screening.

g) Patients who required systemic corticosteroids (for any reason) within the past 2 months.

The study may enroll all asthma patients who meet the inclusion and exclusion criteria, or may be enriched by using a subpopulation of patients predicted to respond well to the study treatment (appropriate justification should be included for the population chosen for study).

Subjects who discontinue from the study early should be identified, and the protocol should clearly prospectively state how missing data will be handled in the statistical analyses and provide appropriate justification for the method chosen. The protocol should also include subject retention strategies and other plans to minimize missing data.

All spirometry should be conducted in accordance with American Thoracic Society Standards.

The study should begin with a placebo run-in period at least two weeks in duration, to wash out any pre-study corticosteroids/long-acting bronchodilators and to establish FEV1 baseline values.

The study protocol should include pre-specified definitions of asthma exacerbation, as well as pre-specified and appropriate escape criteria with consideration to patient safety.

The study protocol should provide a definition of compliant subjects (e.g., used at least 75% and no more than 125% of study drug doses) and specify how compliance will be verified (e.g., by the use of subject diaries).

To ensure study sensitivity, the T and R products should both be statistically superior to placebo ($p<0.05$) with regard to the BE study primary endpoint.

It is the sponsor’s responsibility to enroll a sufficient number of subjects for the study to demonstrate BE of the T to the R product.

The start and stop date of concomitant medication use during the study should be provided in the data set in addition to the reason for the medication use. The sponsor should clearly explain whether the medication was used prior to baseline visit, during the study or both.

All adverse events (AEs) should be reported, whether or not they are considered to be related to the treatment. The report of each AE should include the date of onset, description of AE, severity, relation to study medication, action taken, outcome, and date
of resolution. The information will assist FDA in determining whether the incidence and severity of adverse reactions is different between the T and R products.

BE study endpoints: FEV1 measured in the morning prior to the dosing of inhaled medications on the last day of the 4-week treatment. The primary endpoint should be baseline adjusted (change from baseline). An FEV1 baseline is defined as the average of predose FEV1 values of at least two time points measured in the morning of the first day of a 4-week treatment period. Sampling is recommended to correspond to the same time of day as used on the last day of a 4-week treatment.

Equivalence based on: T/R ratio for the primary endpoint. The 90% confidence intervals for the T/R ratio for the primary endpoint should fall within the limits of 80.00 - 125.00%.

Additional information

Formulation and Device

The T product is recommended to be qualitatively (Q1)\(^7\) and quantitatively (Q2)\(^8\) the same as the R product, and be similar in shape and size to the R product. The T product should have a dose counter. A sponsor is encouraged to submit a working model of the MDI to the Office of Generic Drugs prior to the ANDA submission, in order to ensure the eligibility of a T device under the 505(j) pathway.

\(^7\) Q1 (qualitative sameness) means that the T product uses the same inactive ingredient(s) as the R product.

\(^8\) Q2 (quantitative sameness) means that concentration of the inactive ingredient(s) used in the T product are within ±5% of those used in the R product.
APPENDIX

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Type</th>
<th>Content</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Character</td>
<td>TEST or REF</td>
<td>Identifier for product</td>
</tr>
<tr>
<td>LOT Number</td>
<td>Alphanumeric/Numeric</td>
<td>Alphanumeric/Numeric</td>
<td>Identifier for product lot</td>
</tr>
<tr>
<td>UNIT Number</td>
<td>Numeric</td>
<td>Numeric values</td>
<td>Identifier for unit must be unique for each product (e.g. #1-30 for test and #31-60 for ref).</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S3</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S4</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S5</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S6</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S7</td>
</tr>
<tr>
<td>Stage 8 or Filter</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S8</td>
</tr>
<tr>
<td>ISM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>ISM</td>
</tr>
<tr>
<td>MMAD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>MMAD</td>
</tr>
<tr>
<td>GSD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>GSD</td>
</tr>
<tr>
<td>FPM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>FRM</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>LOT</th>
<th>Unit</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8 or Filter</th>
<th>ISM</th>
<th>MMAD</th>
<th>GSD</th>
<th>FPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>1234</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>