Active Ingredient: Budesonide

Dosage Form; Route: Foam Aerosol; rectal

Recommended Studies: In vivo and in vitro studies

FDA recommends the following in vivo and in vitro studies to establish bioequivalence (BE) of the test (T) and reference (R) budesonide rectal aerosol foam, provided that the T drug product is qualitatively (Q1) and quantitatively (Q2) the same as the R drug product.

1. Type of Study: Bioequivalence study with pharmacokinetic endpoints
 Design: Single-dose, two-way crossover study under fasted conditions
 Strength: 2 mg / actuation
 Subjects: Health males and nonpregnant females, general population
 Additional comments: None

 Analytes to measure (in appropriate biological fluid): Budesonide in plasma

 Bioequivalence based on (90% CI): Budesonide

2. Type of Study: In vitro comparative physicochemical characterization of the T and R formulations
 Design: The following in vitro tests should be performed on 3 separate lots of R drug product and 3 separate lots of T drug product (with each lot manufactured separately):
 a. Test: pH
 Design: pH should be evaluated on the dispensed and collapsed foam.
 b. Test: Weight per Volume and Delivery Amount per Dose
 Design: Weight per volume should be conducted on the uncollapsed foam. Delivery amount per dose should be conducted over the entire contents of the canister using the proposed canister and applicator following the approved labeling.

1 Q1 (qualitative sameness) means that the T product uses the same inactive ingredient(s) as the R product.
2 Q2 (quantitative sameness) means that concentrations of the inactive ingredient(s) used in the T product are within ±5% of those used in the R product.
c. Test: Comparative Pressure Test
Design: Canister pressure should be compared between the T and R drug product.

d. Test: Microscopic Birefringence Analysis
Design: Microscopic birefringence analysis should be conducted on the dispensed foam after complete collapse to determine whether any crystals of undissolved drug form during dispensing.

e. Test: Time to Break Analysis
Design: Time to break analysis should be conducted at 30 °C, 33 °C, 35 °C, and 40 °C. Time to break is the time from dispensing to complete foam collapse (i.e., break).

Additional Information

Device:

FDA recommends sponsors consider the following characteristics of the R drug product in designing the T drug product:

- A metered, multi-dose device capable of delivering the same number of doses as the R drug product
- Similar external design (size, shape, and components) as the R drug product
- Similar external operating principles as the R drug product

Sponsors should refer to FDA’s guidance entitled, *Comparative Analyses and Related Comparative Use Human Factors Studies* (January 2017), which provides the Agency’s current thinking on the identification and assessment of any differences in the design of the user interface for a proposed generic drug-device combination product when compared to its RLD.3

Early in product development and/or prior to the submission of an ANDA, FDA recommends applicants submit to OGD via controlled correspondence and/or pre-ANDA meeting request, the results of the comparative analyses (e.g., comparative labeling analysis, comparative task analyses, comparison in the design of the delivery device constituent), including overall assessment, of any identified differences between the user interface of the T product when compared to the R product, as described in the guidance referenced above.
