Draft Guidance on Formoterol Fumarate; Mometasone Furoate

May 2023

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

In general, FDA’s guidance documents do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidances means that something is suggested or recommended, but not required.

Active Ingredients: Formoterol fumarate; Mometasone furoate

Dosage Form; Route: Aerosol, metered; Inhalation

Strengths:
- 0.005 mg/inh; 0.05 mg/inh
- 0.005 mg/inh; 0.1 mg/inh
- 0.005 mg/inh; 0.2 mg/inh

Recommended studies: Five in vitro bioequivalence studies, one in vivo bioequivalence study with pharmacokinetic endpoints, and one comparative clinical endpoint bioequivalence study

FDA recommends the following in vitro and in vivo studies to establish bioequivalence of the test (T) and reference (R) metered dose inhalers (MDIs) containing formoterol fumarate and mometasone furoate:

In vitro bioequivalence studies:

FDA recommends that prospective applicants conduct the following in vitro bioequivalence studies for all strengths of the T and R products. Use at least three batches each of the T and R products, with no fewer than 10 units from each batch. FDA recommends that three primary stability batches be also used to demonstrate in vitro bioequivalence. The three batches of T product should be manufactured from, a minimum, three different batches of drug substance(s), excipient(s), and device constituent part components. The T product should consist of the final device constituent part and final drug constituent formulation intended to be marketed.
1. **Type of study**: Single actuation content (SAC)
 Design: The SAC test should be performed at the beginning (B), middle (M), and end (E) lifestages\(^1\) of the product using a flow rate of 28.3 L/min. U.S. Pharmacopeia (USP) \(<601>\) Apparatus A or another appropriate apparatus may be used to determine the SAC using a validated assay. The number of actuations per determination should be one.

 Equivalence based on: Population bioequivalence (PBE) analysis of SAC. Refer to the most recent version of the FDA product-specific guidance for *Budesonide Inhalation Suspension*\(^4\) for additional information regarding PBE analysis procedures.

2. **Type of study**: Aerodynamic particle size distribution (APSD)
 Design: The APSD test should be performed at the B and E lifestages of the product using a flow rate of 28.3 L/min or 30 L/min. Cascade impaction devices as per USP \(<601>\) Table 2 or another appropriate method may be used to determine APSD using a validated assay. The APSD determination of each unit should be performed with a minimum number of inhalations justified by the sensitivity of the validated assay.
 Additional comments: Drug deposition on individual sites, including the mouthpiece adapter, the induction port, each stage of the cascade impactor (CI) and the filter, is requested. Mass balance accountability should be reported based on the sum of all deposition sites. For electronic submission of the individual CI data for the T and R products, please provide a table using the format in the appendix, and send them as part of the abbreviated new drug application (ANDA) submission.

 Equivalence based on: PBE analysis of impactor-sized mass (ISM).\(^2\) The CI profiles representing drug deposition on the individual stages of the CI along with the mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD) and fine particle mass (FPM) should be submitted as supportive evidence for equivalent APSD.

3. **Type of study**: Spray pattern
 Design: The spray pattern test should be performed at the B lifestage of the product and at two different distances from the actuator orifice. The selected distances should be at least 3 cm apart and based on the range of 3 to 7 cm from the R actuator mouthpiece.\(^3\)
 Impaction (thin-layer chromatography plate impaction), non-impaction (laser light sheet technology), or other suitable method may be used to determine the spray pattern.
 Additional comments: Spray pattern should be measured quantitatively in terms of ovality ratio and area within the perimeter of the true shape (to include a high proportion, e.g., 95% of the total pattern) for the automated analysis or ovality ratio and D\(_{\text{max}}\) for the manual analysis. Ovality ratio is defined as the ratio of D\(_{\text{max}}\) to D\(_{\text{min}}\). D\(_{\text{max}}\) and D\(_{\text{min}}\) are the longest and shortest diameters, respectively, that pass through the center of mass or

\(^1\) Based on the labeled number of actuations, the terms, B lifestage, M lifestage, and E lifestage represent the first actuation(s) following the labeled number of priming actuations, the actuation(s) corresponding to 50 percent of the labeled number of actuations, and the actuation(s) corresponding to the labeled number of actuations, respectively.

\(^2\) ISM is defined as a sum of the drug mass on all stages of the CI plus the terminal filter, but excluding the top CI stage because of its lack of a specified upper cutoff size limit.

\(^3\) The distance between the actuator orifice and point of spray pattern measurement should be same for T and R.
the center of gravity, as appropriate. The number of sprays per spray pattern would preferably be one.

Equivalence based on: At two selected distances, qualitative comparison of spray shape and PBE analysis of ovality ratio and area within the perimeter of the true shape or ovality ratio and D_max.

4. **Type of study:** Plume geometry
Design: The plume geometry test should be performed at B lifestage of the product. The time sequence sound-triggered flash photography method, laser light sheet technology, or other suitable method may be used to determine the plume geometry at the appropriate post-actuation delay time.
Additional comments: Plume geometry measurements should be reported at a single delay time while the fully developed plume is still in contact with the actuator mouthpiece. Plume geometry should be measured quantitatively in terms of plume angle and width. The plume angle is based on the conical region of the plume extending from a vertex that occurs at or near the actuator mouthpiece. The plume width is measured at a distance equal to the greater of the two distances selected for characterization of the spray pattern.

Equivalence based on: Ratio of the geometric mean of the three batches of T to that of the three batches of R (based on log transformed data) for both plume angle and width, which should fall within 90% - 111%.

5. **Type of study:** Priming and repriming
Design: Priming and repriming tests should be based on the emitted dose (ex-actuator) of a single actuation immediately following the specified number of priming or repriming actuations specified in the R product labeling. The repriming test should be performed following storage for the specified period of non-use after initial use and/or other conditions (e.g., dropping), if the R product labeling provides such repriming information.
Additional comments: For bioequivalence evaluation, the priming and repriming tests should be based on products stored in the valve upright position, with the exception of MDIs for which the R labeling recommends storage in the valve down position. The priming data can be based on the SAC data at the B lifestage.

Equivalence based on: PBE analysis of the emitted dose of a single actuation immediately following the specified number of priming or repriming actuations specified in the R product labeling.

In vivo bioequivalence study with pharmacokinetic endpoints:

FDA recommends that prospective applicants conduct the following pharmacokinetic bioequivalence study for all strengths of the T and R products.
1. Type of Study: Fasting
Design: Single-dose, two-way crossover
Dose: Minimum number of inhalations that is sufficient to characterize a pharmacokinetic profile by using a sensitive analytical method
Subjects: Healthy males and non-pregnant females
Additional comments: The subjects enrolled for in vivo studies should be trained in the use of the inhalation aerosols in a standard fashion prior to each treatment session to assure a relatively consistent inspiratory flow rate and inspiratory duration. A Bio-IND is required prior to conduct of the pharmacokinetic study if the dose exceeds the maximum labeled single dose.

Analytes to measure: Mometasone furoate and formoterol in plasma

Equivalence based on: AUC and C_{max} for mometasone furoate and formoterol. The 90% confidence intervals (CIs) for the geometric mean T/R ratios of AUC and C_{max} should fall within the limits of 80.00% - 125.00%.

Comparative clinical endpoint bioequivalence study:

FDA recommends that prospective applicants conduct the following comparative clinical endpoint bioequivalence study for the indicated strength of the T and R products.

1. Type of Study: Comparative clinical endpoint bioequivalence study
Design: A randomized multiple-dose, placebo-controlled, parallel group design, at minimum consisting of a 2-week run-in period followed by a 4-week treatment period of the placebo, T or R product
Strength: 0.005 mg/inh; 0.1 mg/inh
Dose: 0.020 mg; 0.4 mg (two inhalations twice daily)
Additional comments:
 a. Inclusion criteria should, at minimum, include:
 - Adult male or female subjects (non-childbearing or of child-bearing potential committing to consistent and correct use of an acceptable method of birth control)
 - Diagnosis of asthma as defined by the National Asthma Education and Prevention Program⁴ at least 12 months prior to screening
 - Moderate-to-severe asthma with a pre-bronchodilator FEV₁ of ≥45% and ≤85% of predicted value during the screening visit and on the first day of treatment
 - ≥15% and >0.20 L reversibility of FEV₁ within 30 minutes following 360 mcg of albuterol inhalation (pMDI)
 - Patients should be stable on their chronic asthma treatment regimen for at least 4 weeks prior to enrollment

• Currently non-smoking; had not used tobacco products (i.e., cigarettes, cigars, pipe tobacco) within the past year, and having had \(\leq 10 \) pack-years of historical use

• Ability to replace current short-acting \(\beta \) agonists (SABAs) with salbutamol/albuterol inhaler for use as needed for the duration of the study. Subjects should be able to withhold all inhaled SABAs for at least six hours prior to lung function assessments on study visits

• Ability to discontinue their asthma medications (inhaled corticosteroids and long-acting \(\beta \) agonists) during the run-in period and for remainder of the study

• Willingness to give their written informed consent to participate in the study

b. Exclusion criteria should, at minimum, include:

• Life-threatening asthma, defined as a history of asthma episodes(s) requiring intubation, and/or associated with hypercapnia, respiratory arrest or hypoxic seizures, asthma related syncopal episodes, or hospitalizations within the past year prior to the screening or during the run-in period

• Significant respiratory disease other than asthma (COPD, interstitial lung disease, etc.)

• Evidence or history of clinically significant disease or abnormality including congestive heart failure, uncontrolled hypertension, uncontrolled coronary artery disease, myocardial infarction, or cardiac dysrhythmia. In addition, historical or current evidence of significant hematologic, hepatic, neurologic, psychiatric, renal, or other diseases that, in the opinion of the investigator, would put the patient at risk through study participation, or would affect the study analyses if the disease exacerbates during the study

• Viral or bacterial, upper or lower respiratory tract infection, or sinus, or middle ear infection within four weeks prior to the screening, during the run-in period, or on the day of treatment

• Hypersensitivity to any sympathomimetic drug (e.g., albuterol, formoterol) or any inhaled, intranasal, or systemic corticosteroid therapy

• Patients receiving \(\beta_2 \)-blockers, anti-arrhythmics, anti-depressants, and monoamine oxidase inhibitors within four weeks prior to the screening

• Patients who required systemic corticosteroids (for any reason) within the past four weeks prior to screening

c. The study may enroll all asthma patients who meet the inclusion and exclusion criteria, or may be enriched by using a subpopulation of patients predicted to respond well to the study treatment (appropriate justification should be included for the population chosen for study).

d. Subjects who discontinued from the study early should be identified, and the protocol should clearly, prospectively state how missing data will be handled in the statistical analyses and provide appropriate justification for the method chosen. The protocol should also include subject retention strategies and other plans to minimize missing data. If there are missing data, adequate justification should be provided that the missing data do not lead to biased equivalence
determination. Detailed information for all subjects who are discontinued from
the study should be provided.

e. All spirometry should be conducted in accordance with American Thoracic
Society (ATS) standards.

f. The study is recommended to begin with a placebo run-in period (at least two
weeks in duration; appropriate justification should be included for the duration
chosen) to wash out any pre-study corticosteroids/long-acting bronchodilators and
to establish FEV1 baseline values.

g. The study protocol should include pre-specified definitions of asthma
exacerbation, as well as pre-specified and appropriate escape criteria with
consideration to patient safety.

h. The study protocol should provide a definition of compliant subjects (e.g., used at
least 75% and no more than 125% of study drug doses) and specify how
compliance will be verified (e.g., by the use of subject diaries).

i. To ensure adequate study sensitivity, the T and R products should both be
statistically superior to placebo (p<0.05) with regard to the bioequivalence study
primary endpoints.

j. It is the prospective applicant’s responsibility to enroll a sufficient number of
subjects for the study to demonstrate bioequivalence of the T to the R product.

k. A clear list of permitted and restricted medications should be provided, including
justification for use (or restriction) of certain classes of respiratory therapies,
considering the current standard of care for asthma

l. The start and stop date of concomitant medication use during the study should be
provided in the data set in addition to the reason for the medication use. The
prospective applicant should clearly explain whether the medication was used
prior to baseline visit, during the study or both.

m. All adverse events (AEs) should be reported, whether or not they are considered
to be related to the treatment. The report of each AE should include the date of
onset, description of AE, severity, relation to study medication, action taken,
outcome, and date of resolution. The information will assist FDA in determining
whether the incidence and severity of adverse reactions is different between the T
and R products.

Bioequivalence study endpoints: (i) Area under the serial FEV1-time curve calculated from
time zero to 12 hours (AUC$_{0-12h}$) on the first day of the treatment, and (ii) FEV1 measured in the
morning prior to the dosing of inhaled medications on the last day of the 4-week treatment.

The above two primary endpoints should be baseline adjusted (change from baseline). An FEV1
baseline is defined as the average of pre-dose FEV1 values of at least two time points measured
in the morning of the first day of a 4-week treatment period. Sampling is recommended to
correspond to the same time of day as used on the last day of a 4-week treatment. On the first
day of the treatment, FEV1 should be determined at 0, 0.5, 1, 2, 3, 4, 6, 8, 10 and 12 hours post-
dose.

Equivalence based on: T/R ratio for the primary endpoints. The 90% CIs for the T/R ratios for
the primary endpoints should fall within the limits of 80.00% - 125.00%.
Additional information:

Formulation:
FDA recommends that the T formulation be qualitatively (Q1)\(^5\) and quantitatively (Q2)\(^6\) the same as the R formulation.

Device:
The reference listed drug (RLD) is presented as a metered dose inhaler where the device components include an actuator, canister, and metering valve.

FDA recommends that prospective applicants examine the size and shape, the external critical design attributes, and the external operating principles of the RLD device when designing the Test (T) device including:
- Active, metered, multi-dose format of the reference product
- Number of doses of the reference product
- Dose indicator/dose counter of the reference product

User interface assessment:
An ANDA for this product should include complete comparative analyses so FDA can determine whether any differences in design for the user interface of the proposed generic product, as compared to the RLD, are acceptable and whether the product can be expected to have the same clinical effect and safety profile as the RLD when administered to patients under the conditions specified in the labeling. For additional information, refer to the most recent version of the FDA guidance for industry on *Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA*.\(^b\)

Revision History:
Recommended January 2016; Revised May 2023

Unique Agency Identifier: PSG_022518

\(^b\) For the most recent version of a guidance, check the FDA guidance web page at https://www.fda.gov/regulatory-information/search-fda-guidance-documents.

\(^5\) Q1 (qualitative sameness) means that the test formulation uses the same inactive ingredient(s) as the reference formulation.

\(^6\) Q2 (quantitative sameness) means that concentrations of the inactive ingredient(s) used in the test formulation are within ±5% of those used in the reference formulation.
APPENDIX

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Type</th>
<th>Content</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Character</td>
<td>TEST or REF</td>
<td>Identifier for product</td>
</tr>
<tr>
<td>LOT Number</td>
<td>Alphanumeric/Numeric</td>
<td>Alphanumeric/Numeric</td>
<td>Identifier for product lot</td>
</tr>
<tr>
<td>UNIT Number</td>
<td>Numeric</td>
<td>Numeric values</td>
<td>Identifier for unit must be unique for each product (e.g. #1-30 for test and #31-60 for ref).</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S3</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S4</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S5</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S6</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S7</td>
</tr>
<tr>
<td>Stage 8 or Filter</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S8</td>
</tr>
<tr>
<td>ISM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>ISM</td>
</tr>
<tr>
<td>MMAD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>MMAD</td>
</tr>
<tr>
<td>GSD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>GSD</td>
</tr>
<tr>
<td>FPM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>FRM</td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>LOT</th>
<th>Unit</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8 or Filter</th>
<th>ISM</th>
<th>MMAD</th>
<th>GSD</th>
<th>FPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>1234</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Jan 2016; Revised May 2023