This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

This guidance, which interprets the Agency’s regulations on bioequivalence at 21 CFR part 320, provides product-specific recommendations on, among other things, the design of bioequivalence studies to support abbreviated new drug applications (ANDAs) for the referenced drug product. FDA is publishing this guidance to further facilitate generic drug product availability and to assist the generic pharmaceutical industry with identifying the most appropriate methodology for developing drugs and generating evidence needed to support ANDA approval for generic versions of this product.

The contents of this document do not have the force and effect of law and are not meant to bind the public in any way, unless specifically incorporated into a contract. This document is intended only to provide clarity to the public regarding existing requirements under the law. FDA guidance documents, including this guidance, should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in FDA guidances means that something is suggested or recommended, but not required.

This is a new draft product-specific guidance for industry on generic aclidinium bromide; formoterol fumarate.

Active Ingredient: Aclidinium bromide; Formoterol fumarate

Dosage Form; Route: Powder, metered; inhalation

Strength: 0.4 mg/Inh; 0.012 mg/Inh

Recommended Studies: In vitro and in vivo studies

FDA recommends the following in vitro and in vivo studies to establish bioequivalence (BE) of the test (T) and reference (R) dry powder inhalers (DPIs) containing aclidinium bromide and formoterol fumarate.

In Vitro BE Studies

FDA recommends that prospective applicants conduct the following in vitro studies for the T and R products. Use at least three batches each of the T and R products, with no fewer than 10 units from each batch. FDA recommends that three primary stability batches be also used to
demonstrate in vitro BE. The three batches of T product should be manufactured from, at minimum, three different batches of drug substance(s), excipient(s), and device components. The T product should consist of the final device constituent part and final drug constituent formulation intended to be marketed.

1. **Type of study:** Single actuation content (SAC)

 Design: The SAC test should be performed at the beginning (B), middle (M), and end (E) lifestages of the product, using a flow rate of 31.5 L/min, 63.0 L/min and 94.5 L/min. U.S. Pharmacopoeia (USP) <601> Apparatus B or another appropriate apparatus may be used to determine the SAC using a validated assay. The number of actuations per determination should be one. The volume of air drawn through the delivery system should be 2 L.

 Equivalence based on: Population bioequivalence (PBE) analysis of SAC. Refer to the most recent version of the FDA product-specific guidance for *Budesonide Inhalation Suspension* for additional information regarding PBE analysis procedures.

2. **Type of study:** Aerodynamic particle size distribution (APSD)

 Design: The APSD test should be performed at the B and E lifestages of the product using flow rates of 28.3 L/min or at 31.5 L/min, 63.0 L/min, and 94.5 L/min. The USP <601> Apparatus 3, Apparatus 5, or another appropriate method may be used to determine APSD using a validated assay. The APSD determination of each unit should be performed with a minimum number of capsules justified by the sensitivity of the validated assay. The volume of air drawn through the delivery system should be 4 L.

 Additional comments: Drug deposition on individual sites, including the mouthpiece adapter, the induction port, the pre-separator, and each stage of the cascade impactor (CI) and the filter, is requested. Mass balance accountability should be reported based on the sum of all deposition sites. For electronic submission of the individual CI data for the T and R products, provide a table using the format in the appendix, and send them as part of the abbreviated new drug application (ANDA) submission for BE evaluation.

 Equivalence based on: PBE analysis of impactor-sized mass (ISM). The CI profiles representing drug deposition on the individual stages of the CI along with the mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD) and fine particle mass (FPM) should be submitted as supportive evidence for equivalent APSD.

Pharmacokinetic BE Study

FDA recommends that prospective applicants conduct the following pharmacokinetic (PK) BE study for the T and R products.

1 Based on the labeled number of actuations, the terms, B lifestage, M lifestage, and E lifestage represent the first actuation(s) following the priming, the actuation(s) corresponding to 50 percent of the labeled number of actuations, and the actuation(s) corresponding to the labeled number of actuations, respectively.

2 ISM is defined as a sum of the drug mass on all stages of the CI plus the terminal filter but excluding the top CI stage because of its lack of a specified upper cutoff size limit.
1. **Type of study:** Fasting
 Design: Single-dose, two-way crossover
 Dose: Minimum number of inhalations that is sufficient to characterize a PK profile by using a sensitive analytical method
 Subjects: Adult males and non-pregnant females, general population
 Additional comments: (1) Subjects enrolled for in vivo studies should be trained in the use of the inhalation powders in a standard fashion, prior to each treatment session, to assure a relatively consistent inspiratory flow rate and inspiratory duration. (2) A Bio-IND is required prior to conduct of the PK study if the dose exceeds the maximum labeled single dose.

 Analytes to measure: Aclidinium and formoterol in plasma

 Equivalence based on: AUC and C\text{max} for aclidinium and formoterol. The 90% confidence intervals for the geometric mean T/R ratios of AUC and C\text{max} should fall within the limits of 80.00-125.00%.

Comparative Clinical Endpoint BE Study

FDA recommends that prospective applicants conduct the following comparative clinical endpoint BE study for the T and R products.

1. **Type of study:** Comparative clinical endpoint BE study
 Design: This study could be either of crossover or parallel-group design, taking into consideration the patient population and the current standard-of-care treatment for chronic obstructive pulmonary disease (COPD), and should include appropriate justification for the design chosen. The study should be randomized, single-dose, and placebo-controlled, at minimum consisting of a 2-week run-in period (to allow for washout of anticholinergic agents, as well as chronic long-acting beta-agonists) followed by a one-day treatment period of the placebo, T, or R product.
 Strength: 0.4 mg/Inh; 0.012 mg/Inh
 Dose: 0.4 mg/Inh; 0.012 mg/Inh, one inhalation
 Subjects: Males and non-pregnant females with COPD. The study may enroll all COPD patients who meet the inclusion and exclusion criteria or may be enriched with patients who demonstrate ≥ 15% reversibility to bronchodilator therapy (appropriate justification should be included for the population chosen).

 Inclusion and exclusion criteria:

 Inclusion criteria should, at minimum, include:
 a. Adult (≥ 40 y. o.) male or female subjects of non-child-bearing potential or of child-bearing potential but committed to consistent use of an acceptable method of birth control.
 b. Diagnosis of COPD, as defined by American Thoracic Society (ATS) [GOLD criteria].
c. Post-bronchodilator FEV$_1$ ≤ 70%.
d. Post-bronchodilator FEV$_1$/FVC ratio ≤0.70.
e. Current or former smokers (e.g., with history of ≥ 10 pack-years).
f. Willingness to give their written informed consent to participate in the study.

The exclusion criteria should, at minimum, include:
 a. Known respiratory disorders other than COPD including, but not limited to the following: alpha-1 antitrypsin deficiency, cystic fibrosis, significant asthma, active bronchiectasis, sarcoidosis, lung fibrosis, pulmonary hypertension, pulmonary edema, or interstitial lung disease.
 b. Evidence or history of other clinically significant cardiovascular disease or abnormality (such as, but not limited to, congestive heart failure, uncontrolled hypertension, uncontrolled coronary artery disease, myocardial infarction, arrhythmia, long QT syndrome, paroxysmal atrial fibrillation), renal, neurological, endocrine, immunological, psychiatric, gastrointestinal, hepatic, or hematological disease or abnormality which, in the opinion of the investigator, would put the patient at risk through study participation, or would affect the study analyses if the disease exacerbates during the study.
 c. Known active tuberculosis.
 d. History of paradoxical bronchospasm, narrow-angle glaucoma, prostatic hyperplasia, bladder neck obstruction, or severe renal impairment or urinary retention or any other condition, which, in the opinion of the investigator, would contraindicate the use of an anticholinergic or long-acting beta agonist agent.
 e. History of allergy or hypersensitivity to anticholinergic/muscarinic receptor antagonist agents, long- or short-acting beta-2 agonists, sympathomimetic amines, lactose/milk proteins, or specific intolerance to aerosolized aclidinium or formoterol-containing products or known hypersensitivity to any of the proposed ingredients or components of the delivery system.
 f. Hospitalization for COPD or pneumonia within 12 weeks prior to the initiation of the study.
 g. Treatment for COPD exacerbation within 12 weeks prior to study.
 h. Inability to discontinue COPD medications during the run-in and treatment periods.
 i. Acute (viral or bacterial) upper or lower respiratory tract infection, sinusitis, rhinitis, pharyngitis, urinary tract infection or illness within 6 weeks prior to the initiation of the study.
 j. Abnormal and significant electrocardiogram (ECG) finding prior to the screening, during the run-in and treatment periods.
 k. Lung volume reduction surgery within 12 months prior to the initiation of the study.
 l. Chronic oxygen use for >12 hours/day.

Additional Recommendations:
 1. A clear list of permitted and restricted medications should be provided, including justification for use (or restriction) of certain classes of respiratory therapies, that considers the current standard-of-care for COPD.
2. All spirometry should be conducted in accordance with ATS standards.
3. The study protocol should list appropriate withholding times prior to spirometry for permitted concomitant medications (e.g., 4 hours for short-acting beta-agonists, 12 or 24 hours for long-acting beta agonists).
4. The study should begin with a placebo run-in period (at least 2 weeks in duration; appropriate justification should be included for the duration chosen) to washout any pre-study long-acting anticholinergic or long-acting beta agonist agents and to establish FEV\textsubscript{1} baseline values.
5. To ensure adequate study sensitivity, the T and R products should both be statistically superior to placebo (p < 0.05) with regard to the BE study endpoint.
6. It is the prospective applicant’s responsibility to enroll a sufficient number of subjects for the study to demonstrate BE of the T to the R product.
7. All adverse events (AEs) should be reported, whether or not they are considered to be related to the treatment. The report of AEs should include, at minimum, date of onset, description of the AE, severity, relation to study medication, action taken, outcome and date of resolution.
8. Appropriate pre-defined withdrawal criteria should be described for patients who may require withdrawal during washout period due to COPD exacerbation or inability to tolerate withdrawal of baseline therapy.
9. Subjects who discontinued from the study early should be identified, and the protocol should clearly, prospectively state how missing data will be handled in the statistical analyses and provide appropriate justification for the method chosen. The protocol should also include subject retention strategies and other plans to minimize missing data. If there are missing data, adequate justification should be provided that the missing data do not lead to biased equivalence determination. Detailed information for all subjects who are discontinued from the study should be provided.

BE study endpoint: Area under the serial FEV\textsubscript{1}-time curve calculated from time zero to 12 hours (AUC\textsubscript{0-12h}) on the first day of treatment.

The above BE study endpoint should be baseline-adjusted (change from baseline). FEV\textsubscript{1} measurements should be performed and interpreted in accordance with ATS guidelines.

On the first day of treatment, serial FEV\textsubscript{1} should be determined at 0, 5 and 30 min, 1, 2, 3, 4, 6, 8, 10 and 12 hours post-dose.

Equivalence based on: T/R ratio for the primary endpoint. The 90% confidence intervals for the T/R ratio for the primary endpoint should fall within the limits of 80.00 - 125.00%.
Additional Information:

Formulation:

FDA recommends that the T formulation be qualitatively (Q1)\(^3\) and quantitatively (Q2)\(^4\) the same as the R formulation.

If a prospective applicant uses a Q2-different formulation for its T product, the prospective applicant should explain the reason(s) for not using a T formulation that is Q2 the same as the R formulation. In addition, the prospective applicant should provide pharmaceutical development data, involving in vitro testing of multiple drug-to-excipient ratios that encompass combinations below and above the ratios used in the T and R products.

Device:

This product is a drug-device combination product. Refer to the most recent version of the FDA guidance for industry on *Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA.*\(^5\) An ANDA for a proposed generic drug-device combination product should include complete comparative analyses.

FDA recommends that prospective applicants consider the following characteristics of the R product when designing the T product:

- Passive (breath-actuated) device
- Device-metered multi-dose format
- Number of doses of the R product
- External operating principles and external critical design attributes of the R product
- Size and shape of the R product
- Device resistance of the R product
- Dose indicator/counter

Unique Agency Identifier: PSG_210595

\(^3\) Q1 (qualitative sameness) means that the T formulation uses the same inactive ingredient(s) as the R formulation.

\(^4\) Q2 (quantitative sameness) means that concentration of the inactive ingredient(s) used in the T formulation are within ± 5% of those used in the R formulation.
APPENDIX

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Type</th>
<th>Content</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Character</td>
<td>TEST or REF</td>
<td>Identifier for product</td>
</tr>
<tr>
<td>LOT Number</td>
<td>Alphanumeric/Numeric</td>
<td>Alphanumeric/Numeric</td>
<td>Identifier for product lot</td>
</tr>
<tr>
<td>UNIT Number</td>
<td>Numeric</td>
<td>Numeric values</td>
<td>Identifier for unit must be unique for each product (e.g. #1-30 for test and #31-60 for ref).</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S3</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S4</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S5</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S6</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S7</td>
</tr>
<tr>
<td>Stage 8 or Filter</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S8</td>
</tr>
<tr>
<td>ISM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>ISM</td>
</tr>
<tr>
<td>MMAD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>MMAD</td>
</tr>
<tr>
<td>GSD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>GSD</td>
</tr>
<tr>
<td>FPM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>FRM</td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>LOT</th>
<th>Unit</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8 or Filter</th>
<th>ISM</th>
<th>MMAD</th>
<th>GSD</th>
<th>FPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8 or Filter</td>
<td>ISM</td>
<td>MMAD</td>
<td>GSD</td>
<td>FPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

a For the most recent version of a product-specific guidance, check the FDA product-specific guidance web page at https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm

b For the most recent version of a guidance, check the FDA guidance web page at https://www.fda.gov/regulatory-information/search-fda-guidance-documents