Draft Guidance on Risperidone

Contains Nonbinding Recommendations

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

Active Ingredient: Risperidone

Dosage Form: Route: Injectable; intramuscular

Recommended Studies: Two studies: in vitro and in vivo

1. Type of study: In vitro drug release
 Strength: 25 mg/vial
 Medium: Dissolution medium (pH 7.4) prepared as indicated below
 Volume: 400 mL (200 mL for each temperature)
 Apparatus: Cylinder bottle
 Temperature: 37 °C and 45 °C (water bath)
 Sampling Times: Day 1 and Day 21 for 37 °C
 Multiple time points from Days 0 to 8 for 45 °C. Two sampling
 time points, that bracket T_{50}\% (which is defined as the time of
 50\% drug release), are to be linearly interpolated to determine T_{50}\%.

Parameters to measure: Cumulative drug release at Days 1 and 21 at 37 °C, cumulative
drug release at Day 8 at 45 °C, and T_{50}\% at 45 °C.

Bioequivalence based on (90\% CI): T_{50}\%. The 90\% confidence interval of the
test/reference ratio of T_{50}\% should be within 80-125%.

These data are to be submitted in addition to the method specified in the Dissolution
Methods Database (see below), which is to be used for stability and quality control
testing.

Preparation of dissolution medium (makes 20 L):

- Add 40 g sodium azide into 760 g deionized water.
- Add 18.76 kg of deionized water to a 20 L container.
- Add 200 g of 1M HEPES buffer solution to the container.
- Add 116 g of sodium chloride to 1 kg deionized water.
- Add sodium chloride solution to the container.
- Add 80 mL of sodium azide solution to the container.
- Add 4 mL Tween 20 to the container.
- Aliquot the prepared solution to four separate 5 L containers. Measure pH of each
 aliquot and adjust it to 7.4 ± 0.1 with dilute sodium hydroxide or HCl as needed.
After pH adjustment, measure the osmolality of each aliquot. If the osmolality of each container is not within the range 200 ± 20 mOsm discard the entire batch of media and prepare a new batch.

The proposed parenteral drug product should be qualitatively (Q1) and quantitatively (Q2) the same as the reference product for all strengths (12.5 mg/vial, 25 mg/vial, 37.5 mg/vial, and 50 mg/vial). Please provide characterization data on poly(lactide-co-glycolide) (PLGA) for both the test and reference product including polymer composition (ratio between glycolic acid and lactic acid), molecular weight and weight distribution, and PLGA architecture (e.g., linear or star-branched PLGA). Additional data on PLGA characterization may be requested during the review of the ANDA.

2. Type of study: In vivo, two-period, crossover steady-state
Strength: 12.5 mg/vial, 25 mg/vial, 37.5 mg/vial, 50 mg/vial
Subjects: Male and nonpregnant female patients with schizophrenia or bipolar I disorder who are already receiving a stable regimen of risperidone long-acting injection via the intramuscular route. Patients who are receiving any dosage regimen of risperidone long-acting injection every two weeks would be eligible to participate in the study by continuing their established maintenance dose.

Additional comments: FDA recommends that studies not be conducted using healthy subjects or patients on a different antipsychotic treatment. All strengths of the test product need to be from the same bulk in order for all strengths of the Test to be administered in the PK BE study.

Analytes to measure (in appropriate biological fluid): Risperidone in plasma

Bioequivalence based on (90% CI): Risperidone

In the evaluation of bioequivalence of the multiple dose study, the following pharmacokinetic data should be submitted for risperidone:

- Individual and mean blood drug concentration levels in a dosing interval after steady state is reached
- Individual and mean trough levels ($C_{\text{min ss}}$)
- Individual and mean peak levels ($C_{\text{max ss}}$)
- Calculation of individual and mean steady-state $AUC_{\text{interdose}}$ ($AUC_{\text{interdose}}$ is AUC during a dosing interval at steady-state)
- Individual and mean percent fluctuation [$=100 \times (C_{\text{max ss}} - C_{\text{min ss}})/C_{\text{average ss}}$]
- Individual and mean time to peak concentration
The log-transformed AUC and C\textsubscript{max} data should be analyzed statistically using analysis of variance. The 90% confidence interval for the ratio of the geometric means of the pharmacokinetic parameters (AUC and C\textsubscript{max}) should be within 80-125%. Fluctuation for the test product should be evaluated for comparability with the fluctuation of the reference product. The trough concentration data should also be analyzed statistically to verify that steady-state was achieved prior to pharmacokinetic sampling.

In period 2 (when patients are switched from reference to test or vice versa) individual and mean blood drug concentration levels should also be reported during the third dosing interval (days 28-42). Intensive sampling should be performed during this interval to accurately capture changes in trough and peak levels. This information will be used as supporting data for bioequivalence to confirm that any difference does not result in significant transient differences in C\textsubscript{min}.

Waiver request of in vivo testing: 12.5 mg/vial, 37.5 mg/vial and 50 mg/vial (if not studied in vivo) based on (i) acceptable in vitro and in vivo bioequivalence studies on the 25 mg/vial strength, (ii) proportional similarity of the formulations across all strengths, and (iii) acceptable in vitro drug release testing of all strengths.

Dissolution test method and sampling times: The dissolution information for this drug product can be found on the FDA-Recommended Dissolution Methods website, available to the public at the following location: http://www.accessdata.fda.gov/scripts/cder/dissolution/. Conduct comparative dissolution testing on 12 dosage units each of all strengths of the test and reference products. Specifications will be determined upon review of the abbreviated new drug application (ANDA).