Draft Guidance on Sevelamer Carbonate

This draft guidance, once finalized, will represent the Food and Drug Administration's (FDA's) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the Office of Generic Drugs.

Active Ingredient: Sevelamer carbonate

Dosage Form; Route: Powder for suspension; oral

Overview:

This draft guidance provides recommendations for the development of a generic drug product, sevelamer carbonate powder, using sevelamer carbonate as the active pharmaceutical ingredient (API). First, FDA provides recommendations for supporting a demonstration of API sameness. Second, FDA provides recommendations for demonstrating bioequivalence (BE) of this product.

Recommendations for Demonstrating API Sameness:

The API, sevelamer carbonate, is a polymeric drug substance. According to the labeling of the reference listed drug (RLD) (Renvela®), sevelamer carbonate has the same polymeric structure as sevelamer hydrochloride, in which carbonate replaces chloride as the counter ion. Because sevelamer hydrochloride is poly (allylamine hydrochloride) crosslinked with epichlorohydrin\(^1\), FDA encourages sponsors to follow the same synthetic route to manufacture the API. Otherwise sponsors should contact the Office of Generic Drugs to obtain concurrence if an alternative synthetic route is proposed, which may require characterizations in addition to the ones outlined in the current draft guidance to demonstrate API sameness. Sameness of sevelamer carbonate can be established based on its synthetic route and comparative physico-chemical characterizations. The information on manufacturing process and in-process controls should be provided to the Agency. The sponsor is advised to perform side-by-side comparative testing using the test API and the API extracted from the RLD product. The method of API extraction should be submitted to the Agency. At least three batches of the test API and at least three batches of the extracted reference API should be characterized to assess API sameness and robustness in the manufacturing process. Based on the data generated from the characterization, the sponsor should define and prove the chemical structure and molecular formula of the test API in comparison to the reference API. A schematic representation of sevelamer carbonate is shown in Figure 1\(^2\). The individual parameters (i.e., a, b, and c) associated with various molecular subgroups in the schematic should be measured and reported by the sponsor.

\(^1\) The labeling information of Renagel\(^6\) tablets.
\(^2\) The labeling information of Renvela\(^5\).

Recommended Jun 2011; Revised Dec 2014
The methods and results of the following characterizations of the Test and the Reference APIs should be reported to the Agency. The claim of API sameness should be supported by comparative characterization results of the test and reference APIs.

1. Degree of crosslinking (i.e., ratio of crosslinked amine groups to total amine groups): The Agency recommends that sponsors use 13C solid-state nuclear magnetic resonance (SSNMR) spectroscopy to quantify the degree of crosslinking in the APIs by quantitative peak-area analysis.\(^3\)

2. Degree of protonation (carbonate content): Thermogravimetric analysis (TGA) is recommended to measure the degree of protonation.

3. Total titratable amine: Titration is recommended to quantify the total-titratable-amine content.

4. Particle size: Particle size distributions of the APIs should be reported.

5. Elemental analysis: The results should include C, H, and N elements.

6. Swelling index: The range of swelling index of the APIs should be reported.

7. The Agency encourages the sponsor to perform additional characterization including, but not limited to, Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) to further characterize the chemical structure and physico-chemical properties of the APIs.

Recommendations for Demonstrating Bioequivalence:

Recommended Studies: Two in vitro studies

1. Type of study: In vitro equilibrium binding study
 Design: With and without acid pre-treatment at pH 4 and pH 7
 Strength: 2.4 g/packet
 Subjects: Not applicable (N/A)
 Additional comments: The equilibrium binding study is considered the pivotal BE study. This study should be conducted by incubating the test and reference products with at least eight different concentrations of phosphate, with and without acid pretreatment, at pH 4 and pH 7. Each phosphate incubation medium should contain 80 mM NaCl and 100 mM N,N-Bis (hydroxyethyl)-2-aminoethanesulfonic acid. Phosphate concentrations should be spaced along the spectrum until the maximum binding is clearly established. All incubations should be conducted at 37°C. Each binding study should be repeated at least 12 times. In addition, data should be provided demonstrating that the length of time selected for incubation with the phosphate-containing medium yields maximum binding.

2. Type of study: In vitro kinetic binding study
 Design: With and without acid pre-treatment at pH 4 and pH 7
 Strength: 2.4 g/packet
 Subjects: N/A
 Additional comments: The kinetic binding study should be used to support the pivotal equilibrium binding study. This study should be conducted by incubating the test and reference products for at least eight different lengths of time, with two different phosphate concentrations, with and without acid pre-treatment, at pH 4 and pH 7. The phosphate concentrations used in each kinetic binding study should be the lowest and highest used in the corresponding equilibrium binding study. Each incubation medium should contain 80 mM NaCl and 100 mM N,N-Bis (hydroxyethyl)-2-aminoethanesulfonic acid. Times should be selected along the spectrum until the maximum binding is clearly established. All incubations should be conducted at 37°C. Each binding study should be repeated at least 12 times.

Analytes to measure: Unbound phosphate in filtrate (to calculate phosphate bound to resin).

For the in vitro equilibrium binding study, the Langmuir binding constants k_1 and k_2 should be determined in the equilibrium binding study. The test/reference ratio should be calculated for k_1.

Recommended Jun 2011; Revised Dec 2014
The 90% confidence interval (CI) should be calculated for k_2 with the acceptance criteria of 80% to 120%.

For the in vitro kinetic binding study, the test/reference bound phosphate ratios at the various times should be compared but not subjected to the 90% CI criterion.

Bioequivalence based on (90% CI): The Langmuir binding constant k_2 from the equilibrium binding study.

Waiver requests of in vitro equilibrium and kinetic binding studies: 800 mg/packet, based on (i) acceptable equilibrium and kinetic in vitro BE studies on the 2.4 g/packet strength and (ii) proportional similarity in the formulations of the 800 mg/packet and 2.4 g/packet strengths.

Dissolution test method and sampling times: N/A