Draft Guidance on Umeclidinium Bromide

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

Active Ingredient: Umeclidinium bromide

Dosage Form; Route: Powder; inhalation

Strength: 0.0625 mg base/INH

Recommended Studies: In vitro and in vivo studies

FDA recommends the following in vitro and in vivo studies to establish bioequivalence (BE) of the test (T) and reference (R) dry powder inhalers (DPIs) containing umeclidinium bromide.

In Vitro Studies

FDA recommends that applicants conduct the following in vitro studies for the T and R products. Use at least three batches each of the T and R products, with no fewer than 10 units from each batch. The three batches of T product should be manufactured from, at minimum, three different batches of drug substance(s), excipient(s), and container/closure system.

1. **Type of study:** Single actuation content (SAC)
 Design: The SAC test should be performed at the beginning (B), middle (M), and end (E) lifestages of the product, using a flow rate of 30 L/min, 60 L/min and 90 L/min. U.S. Pharmacopoeia (USP) <601> Apparatus B or another appropriate apparatus may be used to determine the SAC using a validated assay. The number of actuations per determination should be one. The volume of air drawn through the delivery system should be 2 L.

 Equivalence based on: Population bioequivalence (PBE) analysis of SAC. Please refer to the draft Budesonide Inhalation Suspension BE Guidance for additional information regarding PBE.2

2. **Type of study:** Aerodynamic particle size distribution (APSD)
 Design: The APSD test should be performed at the B and E lifestages of the product using flow rates of 28.3 L/min or 30 L/min, 60 L/min and 90 L/min. The USP <601>

1 Based on the labeled number of actuations, the terms, B lifestage, M lifestage, and E lifestage represent the first actuation(s), the actuation(s) corresponding to 50 percent of the labeled number of actuations, and the actuation(s) corresponding to the labeled number of actuations, respectively.

Apparatus 3, Apparatus 5, or another appropriate method may be used to determine APSD using a validated assay. The APSD determination of each unit should be performed with a minimum number of inhalations justified by the sensitivity of the validated assay. The volume of air drawn through the delivery system should be 4 L. Additional comments: Drug deposition on individual sites, including the mouthpiece adapter, the induction port, the pre-separator, and each stage of the cascade impactor (CI) and the filter, is requested. Mass balance accountability should be reported based on the sum of all deposition sites. For electronic submission of the individual CI data for the T and R products, provide a table using the format in the appendix, and send them as part of the abbreviated new drug application (ANDA) submission for BE evaluation.

Equivalence based on: PBE analysis of impactor-sized mass (ISM).\(^3\) The CI profiles representing drug deposition on the individual stages of the CI along with the mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD) and fine particle mass (FPM) should be submitted as supportive evidence for equivalent APSD.

Pharmacokinetic Study

FDA recommends that applicants conduct the following pharmacokinetic (PK) BE study for the T and R products.

3. **Type of study**: Fasting
 Design: Single-dose, two-way crossover
 Dose: Minimum number of inhalations that is sufficient to characterize a PK profile by using a sensitive analytical method
 Subjects: Normal healthy males and non-pregnant females, general population
 Additional comments: (1) Subjects enrolled for in vivo studies should be trained in the use of the inhalation powder in a standard fashion, prior to each treatment session, to assure a relatively consistent inspiratory flow rate and inspiratory duration, (2) A Bio-IND is required prior to conduct of the PK study if the dose exceeds the maximum labeled single dose.

Analyte(s) to measure (in appropriate biological fluid): Umeclidinium in plasma

Equivalence based on: AUC and \(C_{\text{max}}\) for umeclidinium. The 90% confidence intervals for the geometric mean T/R ratios of AUC and \(C_{\text{max}}\) should fall within the limits of 80.00-125.00%.

Clinical Pharmacodynamic BE Study

FDA recommends that applicants conduct the following clinical pharmacodynamic study for the T and R products.

\(^3\) ISM is defined as a sum of the drug mass on all stages of the CI plus the terminal filter, but excluding the top CI stage because of its lack of a specified upper cutoff size limit.
4. **Type of study**: BE study
 Design: This study could be either of crossover or parallel-group design, taking into consideration the patient population and the current standard-of-care treatment for chronic obstructive pulmonary disease (COPD), and should include appropriate justification for the design chosen. The study should be randomized, single-dose, and placebo-controlled, at minimum consisting of a 2-week run-in period (to allow for washout of anticholinergic agents, as well as chronic long-acting beta-agonists and chronic inhaled corticosteroids) followed by a one-day treatment period of the placebo, T, or R product.

 Strength: 0.0625 mg base/inh (umeclidinium bromide inhalation powder)
 Dose: 0.0625 mg umeclidinium, single-dose
 Subjects: Males and non-pregnant females with COPD. The study may enroll all COPD patients who meet the inclusion and exclusion criteria, or may be enriched with patients who demonstrate ≥ 15% reversibility to bronchodilator therapy (appropriate justification should be included for the population chosen)

Additional comments:

1. **Inclusion criteria** should, at minimum, include:
 a. Adult (≥ 40 y. o.) male or female subjects of non-child-bearing potential or of child-bearing potential but committed to consistent use of an acceptable method of birth control
 b. Diagnosis of COPD, as defined by American Thoracic Society (ATS) [GOLD criteria]
 c. Post-bronchodilator FEV₁ ≤ 70%
 d. Post-bronchodilator FEV₁/FVC ratio ≤ 0.70
 e. Current or former smokers (e.g., with history of ≥ 10 pack-years)
 f. Willingness to give their written informed consent to participate in the study

2. **Exclusion criteria** should, at minimum, include:
 a. Known respiratory disorders other than COPD including, but not limited to the following: alpha-1 antitrypsin deficiency, cystic fibrosis, significant asthma, active bronchiectasis, sarcoidosis, lung fibrosis, pulmonary hypertension, pulmonary edema, or interstitial lung disease
 b. Evidence or history of other clinically significant disease or abnormality (such as congestive heart failure, uncontrolled hypertension, uncontrolled coronary artery disease, myocardial infarction, stroke, glaucoma, or cardiac dysrhythmia), which, in the opinion of the investigator, would put the patient at risk through study participation, or would affect the study analyses if the disease exacerbated during the study
 c. Known active tuberculosis
 d. History of paradoxical bronchospasm, narrow-angle glaucoma, prostatic hypertrophy, bladder neck obstruction, or any other condition, which, in the opinion of the investigator, would contraindicate the use of an anticholinergic agent
 e. History of allergy or hypersensitivity to anticholinergic/muscarinic receptor antagonist agents, beta-2 adrenergic agonists, lactose/milk proteins, or specific
intolerance to aerosolized umeclidinium-containing products or known hypersensitivity to any of the proposed ingredients or components of the delivery system
f. Hospitalization for COPD or pneumonia within 12 weeks prior to the initiation of the study
g. Treatment for COPD exacerbation within 12 weeks prior to study
h. Inability to discontinue COPD medications during the run-in and treatment periods
i. Acute (viral or bacterial) upper or lower respiratory tract infection, sinusitis, rhinitis, pharyngitis, urinary tract infection or illness within 6 weeks prior to the initiation of the study
j. Abnormal and significant ECG finding prior to the screening, during the run-in and treatment periods
k. Lung volume reduction surgery within 12 months prior to the initiation of the study
l. Chronic oxygen use for >12 hours/day

3. A clear list of permitted and restricted medications should be provided, including justification for use (or restriction) of certain classes of respiratory therapies, that considers the current standard-of-care for COPD.

4. All spirometry should be conducted in accordance with ATS standards.

5. The study protocol should list appropriate withholding times prior to spirometry for permitted concomitant medications (e.g., 4 hours for short-acting beta-agonists, 12 or 24 hours for long-acting beta-agonists).

6. The study should begin with a placebo run-in period (at least 2 weeks in duration; appropriate justification should be included for the duration chosen) to washout any pre-study long-acting anticholinergic agents and to establish FEV₁ baseline values.

7. To ensure adequate study sensitivity, the T and R products should both be statistically superior to placebo ($p < 0.05$) with regard to the BE study primary endpoint.

8. It is the sponsor’s responsibility to enroll a sufficient number of subjects for the study to demonstrate BE of the T to the R product.

9. All adverse events (AEs) should be reported, whether or not they are considered to be related to the treatment. The report of AEs should include date of onset, description of the AE, severity, relation to study medication, action taken, outcome and date of resolution.

10. Appropriate pre-defined withdrawal criteria should be described for patients who may require withdrawal during washout period due to COPD exacerbation or inability to tolerate withdrawal of baseline therapy.

11. Subjects who discontinued from the study early should be identified, and the protocol should clearly, prospectively state how missing data will be handled in the statistical analyses and provide appropriate justification for the method chosen. The protocol should also include subject retention strategies and other plans to minimize missing data.
BE study primary endpoint: Area under the serial FEV₁-time curve calculated from time zero to 24 hours (AUC₀-2₄h) following the treatment.

The above BE study endpoint should be baseline-adjusted (change from baseline). FEV₁ measurements should be performed and interpreted in accordance with ATS guidelines.

Serial spirometry (FEV₁) should be measured at 0, 5 and 30 min, 1, 2, 4, 6, 8, 10, 12, 23 and 24 hours post-dose.

For each treatment group, time to peak bronchodilator response (Tₘₐₓ) and FEV₁ values at all measurement times within each evaluation period should be included in the final study report.

Equivalence based on: T/R ratio for the primary endpoint. The 90% confidence intervals for the T/R ratios for the BE study endpoint should fall within 80.00-125.00%.

Additional Information

Formulation

FDA recommends that the T product be qualitatively (Q₁)⁴ and quantitatively (Q₂)⁵ the same as the R product.

If a sponsor uses a Q₂-different formulation for its T product, the sponsor should explain the reason(s) for not using a T formulation that is Q₂ the same as the R formulation. In addition, the sponsor should provide pharmaceutical development data, involving in vitro testing of multiple drug-to-excipient ratios that encompass combinations below and above the ratios used in the T and R products.

Device

Sponsors are encouraged to submit a working model and engineering drawings to the Office of Generic Drugs (OGD) prior to the abbreviated new drug application (ANDA) submission.

FDA recommends that the T product have the following characteristics:

- Passive (breath-actuated) device
- Pre-metered multi-dose format
- Same number of doses as the R product
- Similar external operating procedures as the R product
- Similar size and shape to the R product
- Comparable device resistance to the R product
- Dose indicator/counter

⁴ Q₁ (qualitative sameness) means that the T product uses the same inactive ingredient(s) as the R product.

⁵ Q₂ (quantitative sameness) means that concentration of the inactive ingredient(s) used in the T product are within ± 5% of those used in the R product.
In addition, in vitro and in-use studies should be conducted to support the functionality, accuracy and robustness of the proposed T product.
APPENDIX

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Type</th>
<th>Content</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Character</td>
<td>TEST or REF</td>
<td>Identifier for product</td>
</tr>
<tr>
<td>LOT Number</td>
<td>Alphanumeric/Numeric</td>
<td>Alphanumeric/Numeric</td>
<td>Identifier for product lot</td>
</tr>
<tr>
<td>UNIT Number</td>
<td>Numeric</td>
<td>Numeric values</td>
<td>Identifier for unit must be unique for each product (e.g. #1-30 for test and #31-60 for ref).</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S3</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S4</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S5</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S6</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S7</td>
</tr>
<tr>
<td>Stage 8 or Filter</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>S8</td>
</tr>
<tr>
<td>ISM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>ISM</td>
</tr>
<tr>
<td>MMAD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>MMAD</td>
</tr>
<tr>
<td>GSD</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>GSD</td>
</tr>
<tr>
<td>FPM</td>
<td>Numeric</td>
<td>Numeric Values</td>
<td>FRM</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>LOT</th>
<th>Unit</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8 or Filter</th>
<th>ISM</th>
<th>MMAD</th>
<th>GSD</th>
<th>FPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>1234</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Oct 2016