U.S. flag An official website of the United States government
  1. Home
  2. Drug Databases
  3. Drug Safety-related Labeling Changes

Drug Safety-related Labeling Changes (SrLC)

Get Email Alerts | Guide

STALEVO 50 (NDA-021485)

(CARBIDOPA; ENTACAPONE; LEVODOPA)

Safety-related Labeling Changes Approved by FDA Center for Drug Evaluation and Research (CDER)

Download Data

Expand all

12/30/2019 (SUPPL-42)

Approved Drug Label (PDF)

6 Adverse Reactions

6.1 Clinical Trials Experience

(Additions and/or revisions underlined)

Because clinical trials are conducted under widely varying conditions, the incidence of adverse reactions (number of unique patients experiencing an adverse reaction associated with treatment/total number of patients treated) observed in the clinical trials of a drug cannot be directly compared to the incidence of adverse reactions in the clinical trials of another drug and may not reflect the incidence of adverse reactions observed in clinical practice.

Entacapone

The most commonly observed adverse reactions (incidence at least 3% greater than placebo incidence) in the double-blind, carbidopa-levodopa-placebo-controlled trials of entacapone (N=1,003 patients) associated with the use of carbidopa-levodopa-entacapone alone and not seen at an equivalent frequency among the placebo-treated patients were: dyskinesia, diarrhea, nausea, hyperkinesia, abdominal pain, vomiting, dry mouth, and urine discoloration.

8 Use in Specific Populations

8.1 Pregnancy

(PLLR conversion)

Risk Summary

There are no adequate data on the developmental risk associated with the use of Stalevo in pregnant women. In animals, administration of carbidopa-levodopa or entacapone during pregnancy was associated with developmental toxicity, including increased incidences of fetal malformations. The estimated background risk of major birth defects and miscarriage in the indicated population is unknown. In the U.S. general population, the estimated background risks of major birth defects and miscarriage in clinically recognized pregnancies are 2 to 4% and 15 to 20%, respectively.

Data

Animal data

In nonclinical studies in which carbidopa-levodopa was administered to pregnant animals, increased incidences of visceral and skeletal malformations were observed in rabbits at all doses and ratios of carbidopa-levodopa tested, which ranged from 10 times (carbidopa)-5 times (levodopa) to 20 times (carbidopa)-10 times (levodopa) the maximum recommended human dose (MRHD) of 1,600 mg/day. In rats, there was a decrease in the number of live pups delivered by dams receiving approximately two times (carbidopa)-five times (levodopa) the MRHD throughout organogenesis. No effects on malformation frequencies were observed in mice receiving up to 20 times the MRHD of carbidopa-levodopa.

In embryo-fetal development studies of entacapone, pregnant animals received doses of up to 1,000 mg/kg/day (rats) or 300 mg/kg/day (rabbits) throughout organogenesis. Increased incidences of fetal variations were evident in litters from rats treated with the highest dose, in the absence of overt signs of maternal toxicity. The maternal plasma entacapone exposure (AUC) associated with this dose was approximately 34 times that in humans at the MRHD. Increased frequencies of abortions and late/total resorptions and decreased fetal weights were observed in the litters of rabbits treated with maternally toxic doses of 100 mg/kg/day (plasma AUCs less than that in humans at the MRHD) or greater. There were no increases in malformation rates in these studies.

When entacapone was administered to female rats prior to mating and during early gestation, an increased incidence of fetal eye anomalies (macrophthalmia, microphthalmia, anophthalmia) was observed in the litters of dams treated with doses of 160 mg/kg/day (plasma AUCs seven times that in humans at the MRHD) or greater, in the absence of maternal toxicity. Administration of up to 700 mg/kg/day (plasma AUCs 28 times that in humans at the MRHD) to rats during the latter part of gestation and throughout lactation produced no evidence of developmental impairment in the offspring.

8.2 Lactation

(PLLR conversion)

Risk Summary

Levodopa has been detected in human milk after administration of carbidopa-levodopa. There are no data on the presence of entacapone or carbidopa in human milk, the effects of levodopa, carbidopa, or entacapone on the breastfed infant, or the effects on milk production. However, inhibition of lactation may occur because levodopa decreases secretion of prolactin. Carbidopa and entacapone are excreted in rat milk. In lactating rat, oral administration of radiolabeled entacapone resulted in levels of entacapone and/or metabolites in milk up to 2 to 3 times that in plasma.

The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for Stalevo and any potential adverse effects on the breastfed infant from Stalevo or from the underlying maternal condition.

17 PCI/PI/MG (Patient Counseling Information/Patient Information/Medication Guide)

PATIENT COUNSELING INFORMATION

(Additions and/or revisions underlined)

Pregnancy

Instruct patients to notify their healthcare provider if they become pregnant or intend to become pregnant during therapy.

Lactation

Instruct patients to notify their healthcare provider if they intend to breastfeed or are breastfeeding an infant.