• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Anal Chem 2006 Jul 1;78(13):4634-4641

Chemical Characterization of Diaspirin Cross-Linked Hemoglobin Polymerized with Poly(ethylene glycol).

Buehler PW, Boykins RA, Norris S, Alayash AI

Alayash AI, US FDA, Ctr Biol Evaluat & Res, Div Hematol, Lab Biochem & Vasc Biol, Bethesda, MD 20892 USA US FDA, Ctr Biol Evaluat & Res, Div Hematol, Lab Biochem & Vasc Biol, Bethesda, MD 20892 USA US FDA, Ctr Biol Evaluat & Res, Div Bacterial PArasit & Allergen Prod, Biophys Lab, Bethesda, MD 20892 USA


A lack of specificity associated with chemical modification methods used in the preparation of certain hemoglobin (Hb)-based oxygen carriers (HBOCs) may alter Hb structure and function, as amino acids located in critical regions (e.g., alpha-beta interfaces and the 2,3-DPG binding pocket) may unintentionally be targeted. Hb protein surface modifications with various poly(ethylene glycol) (PEG) derivatives have been used as conjugating and polymerizing agents with the intent of improving reaction site specificity/reproducibility and ultimately reducing the untoward hypertensive response due to nitric oxide scavenging by smaller molecular size tetrameric species (i.e., 64 kDa) in HBOC solutions. Previous experiments performed in our laboratory have evaluated the influence of polymerization of diaspirin alpha-alpha cross-linked Hb (alphaalpha-DBBF-Hb) with a bifunctional modified PEG, bis(maleoylglycylamide) PEG (BMAA-PEG), in terms of oxygen carrying capacity, redox properties, hypertensive response, and renal clearance in rats. The data presented in this paper specifically evaluate the influence of BMAA-PEG on alphaalpha-DBBF-Hb (Poly-alphaalpha-DBBF-Hb) to identify molecular weight distribution, protein conformation, and site-specific modification, as well as to provide insight into the previously determined in vitro and in vivo functional and vasoactive characteristics of this HBOC. Chemical analysis performed herein reveals nonspecific modifications induced by BMAA-PEG that result in the full modification of alphaalpha-DBBF-Hb leaving no tetrameric cross-linked starting material in solution. These data are inconsistent with the continuing assumption that molecular size (i.e., 64 kDa) has a direct influence on HBOC-mediated vasoactivity and that other protective strategies should be considered to control blood pressure imbalances.

Category: Journal Article
PubMed ID: #16808476
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29