• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Mol Carcinog 1996 Jan;15(1):70-80

Differential spontaneous transformation in vitro of newly established mouse fibroblast lines carrying or lacking the viable yellow mutation (Avy) of the mouse agouti locus.

Hsiao WL, Wolff GL, North BM, Ollmann MM, Barsh GS, Fan H


The pleiotropic effects of the viable yellow mutation (Avy), an allele of the mouse agouti coat-color locus, include increased susceptibility to spontaneous and chemically induced tumors that affect a wide variety of tissues. As a first step toward understanding the molecular basis of this phenomenon, we established permanent fibroblast-like cell lines from newborn Avy/a and control congenic a/a mice and compared their growth characteristics in vitro. From the VY/WffC3Hf/Nctr and YS/WffCH3f/Nctr-Avy inbre strains, each of which carries the Avy allele on a congenic background, 38 clonal Avy/a and 16 clonal a/a lines were established. Regardless of inbred strain, all Avy/a cell lines exhibited a significant degree of spontaneous transformation, as assessed by focus formation in monolayer culture, whereas none of the a/a cell lines formed foci in prolonged cultures. To test whether changes in dosage of the Avy- or a-bearing chromosomes were related to these events, we analyzed each cell line with a closely linked molecular probe from the Emv-15 locus, which in the VY strain detects a restriction fragment length variant (RFLV) informative for the Avy- and a-bearing chromosomes. Most of the transformed foci maintained heterozygosity for RFLVs detected by the probe, but two of the transformants lost the a-associated RFLV, and at least one of the transformants exhibited amplification of the Avy-associated RFLV. When the transformants were analyzed with 5' sequences derived from the recently cloned agouti gene, three of eight transformants lost the a-associated RFLV, and two of the transformants showed amplification of the Avy-associated RFLV. Reverse transcriptase-polymerase chain reaction assays indicated that agouti RNA was detected in Avy/a, not a/a cell lines. Surprisingly, some of the Avy/a transformants lacked agouti RNA. These results suggest that deregulated expression of the Avy allele is required for the initiation but not for the maintenance of transformation of the Avy/a cell cultures. These cell lines may provide an in vitro culture system for studying the effect of the agouti gene on tumorigenicity as well as to potentially study other pleiotropic phenotypes.

Category: Journal Article
PubMed ID: #8561869 DOI: 10.1002/(SICI)1098-2744(199601)15:1<70::AID-MC10>3.0.CO;2-1
Includes FDA Authors from Scientific Area(s): Toxicological Research
Entry Created: 2012-12-25