• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Eur J Neurosci 2008 Mar;27(5):1075-85

Cytoplasmic calcium mediates oxidative damage in an excitotoxic /energetic deficit synergic model in rats.

Perez-De La Cruz V, Konigsberg M, Pedraza-Chaverri J, Herrera-Mundo N, Diaz-Munoz M, Moran J, Fortoul-van der Goes T, Rondan-Zarate A, Maldonado PD, Ali SF, Santamaria A


Excessive calcium is responsible for triggering different potentially fatal metabolic pathways during neurodegeneration. In this study, we evaluated the role of calcium on the oxidative damage produced in an in vitro combined model of excitotoxicity/energy deficit produced by the co-administration of quinolinate and 3-nitropropionate to brain synaptosomal membranes. Synaptosomal fractions were incubated in the presence of subtoxic concentrations of these agents (21 and 166 microm, respectively). In order further to characterize possible toxic mechanisms involved in oxidative damage in this experimental paradigm, agents with different properties - dizocilpine, acetyl L-carnitine, iron porphyrinate and S-allylcysteine - were tested at increasing concentrations (10-1000 microm). Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. For confirmatory purposes, additional fractions were incubated in parallel in the presence of the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Under physiological conditions of extracellular calcium availability, synaptomes exposed to both toxins displayed an increased lipoperoxidation (76% above controls), and this effect was partially attenuated by the tested agents as follows: dizocilpine = iron porphyrinate > acetyl L-carnitine > S-allylcysteine. When the incubation medium was deprived of calcium, the lipoperoxidative effect achieved in this experimental paradigm was still high (49% above the control), and the order of attenuation was: iron porphyrinate > S-allylcysteine > acetyl L-carnitine > dizocilpine. BAPTA-AM was effective in preventing the pro-oxidant action of both toxins, promoting even lower peroxidative levels than those quantified under basal conditions. Our results suggest that the lipid peroxidation induced in synaptosomal fractions by quinolinate plus 3-nitropropionate is largely dependent on the cytoplasmic concentrations of calcium.

Category: Journal Article
PubMed ID: #18364032 DOI: 10.1111/j.1460-9568.2008.06088.x
Includes FDA Authors from Scientific Area(s): Toxicological Research
Entry Created: 2013-01-09