• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Oncotarget 2013 Feb;4(2):206-17

TRAIL induces apoptosis in oral squamous carcinoma cells - a crosstalk with oncogenic Ras regulated cell surface expression of death receptor 5.

Chen JJ, Mikelis CM, Zhang Y, Gutkind JS, Zhang B

Abstract

TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through its death receptors (DRs) 4 and/or 5 expressed on the surface of target cells. The selectivity of TRAIL towards cancer cells has promoted clinical evaluation of recombinant human TRAIL (rhTRAIL) and its agonistic antibodies in treating several major human cancers including colon and non-Hodgkin's lymphoma. However, little is known about their ability in killing oral squamous cell carcinoma (OSCC) cells. In this study, we tested the apoptotic responses of a panel of seven human OSCC cell lines (HN31, HN30, HN12, HN6, HN4, Cal27, and OSCC3) to rhTRAIL and monoclonal antibodies against DR4 or DR5. We found that rhTRAIL is a potent inducer of apoptosis in most of the oral cancer cell lines tested both in vitro and in vivo. We also showed that DR5 was expressed on the surface of the tested cell lines which correlated with the cellular susceptibility to apoptosis induced by rhTRAIL and anti-DR5 antibody. By contrast, little or no DR4 was detected on the surface of OSCC3 and HN6 cells rendering cellular resistance to DR4 antibody and a reduced sensitivity to rhTRAIL. Notably, the overall TRAIL sensitivity correlated well with the levels of endogenous active Ras in the cell lines tested. Expression of a constitutively active Ras mutant (RasV12) in OSCC3 cells selectively upregulated surface expression of DR5, but not DR4, and restored TRAIL sensitivity. Our findings could have implications for the use of TRAIL receptor targeted therapies in the treatment of human OSCC tumors particularly the ones harboring constitutively active Ras mutant.


Category: Journal Article
PubMed ID: #23470485 DOI: 10.18632/oncotarget.813
PubMed Central ID: #PMC3712567
Includes FDA Authors from Scientific Area(s): Drugs
Entry Created: 2013-03-09 Entry Last Modified: 2019-11-24
Feedback
-
-