• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Astrobiology 2013 Aug;13(8):703-14

Effects of simulated microgravity on primary human NK cells.

Li Q, Mei Q, Huyan T, Xie L, Che S, Yang H, Zhang M, Huang Q


The deleterious effects of microgravity on lymphocytes have been demonstrated in previous studies. However, research on the effects of microgravity on human natural killer (NK) cells remains exceedingly limited. In this study, we demonstrated that NK cell cytotoxicity was significantly decreased under simulated microgravity (SMG) conditions (p<0.05). Several processes, including apoptosis, receptor expression, and cytokine secretion, were investigated in human NK cells under SMG. We observed decreased cytotoxicity, concurrent with increased apoptosis and necrosis, in NK cells after exposure to SMG (p<0.05). Additionally, interferon (IFN)-gamma and perforin expression decreased significantly, and the expression of granzyme-B was only slightly reduced. Meanwhile, SMG selectively inhibited the expression of certain surface receptors on NK cells. Specifically, the expression of NKG2A and NKG2D were significantly downregulated under SMG, but the expression of NKp30 and NKp44 was not affected. We also found that interleukin (IL)-15 alone or in combination with IL-12 could counteract the inhibition of NK cell cytotoxicity under SMG. Our findings indicate that human NK cells were sensitive to SMG, as reflected by their decreased cytotoxicity. Factors such as increased early apoptosis and late apoptosis/necrosis and the decreased expression of INF-gamma, cytolytic proteins, and cell surface receptors may be responsible for the loss of cytotoxicity in human NK cells under SMG. A combination of IL-12 and IL-15 may be useful as a therapeutic strategy for overcoming the effects of microgravity on human NK cells during long space missions. Key Words: Simulated microgravity (SMG)-Natural killer (NK) cells-Cytotoxicity. Astrobiology 13, 703-714.

Category: Journal Article
PubMed ID: #23919749 DOI: 10.1089/ast.2013.0981
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2013-09-19 Entry Last Modified: 2014-01-05