• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

J AOAC Int 2013 Sep-Oct;96(5):1103-8

Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

Liao BS, Sram JC, Files DJ

Abstract

A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.


Category: Journal Article
PubMed ID: #24282955 DOI: 10.5740/jaoacint.11-053
Includes FDA Authors from Scientific Area(s): Regulatory Affairs
Entry Created: 2013-11-29 Entry Last Modified: 2013-12-01
Feedback
-
-