• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Stem Cell Res 2015 Oct 30;15(3):655-64

System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs) to in vitro cultivation.

Mindaye ST, Surdo JL, Bauer SR, Alterman MA

Abstract

Human bone marrow stromal cells (hBMSCs, also loosely called bone marrow-derived mesenchymal stem cells) are the subject of increasing numbers of clinical trials and laboratory research. Our group recently reported on the optimization of a workflow for a sensitive proteomic study of hBMSCs. Here, we couple this workflow with a label-free protein quantitation method to investigate the molecular responses of hBMSCs to long-term in vitro passaging. We explored the proteomic responses of hBMSCs by assessing the expression levels of proteins at early passage (passage 3, P3) and late passage (P7). We used multiple biological as well as technical replicates to ensure that the detected proteomic changes are repeatable between cultures and thus likely to be biologically relevant. Over 1700 proteins were quantified at three passages and a list of differentially expressed proteins was compiled. Bioinformatics-based network analysis and term enrichment revealed that metabolic pathways are largely altered, where many proteins in the glycolytic, pentose phosphate, and TCA pathways were shown to be largely upregulated in late passages. We also observed significant proteomic alterations in functional categories including apoptosis, and ER-based protein processing and sorting following in vitro cell aging. We posit that the comprehensive map outlined in this report of affected phenotypes as well as the underpinning molecular factors tremendously benefit the effort to uncovering targets that are not just used only to monitor cell fitness but can be employed to slowdown the in vitro aging process in hBMSCs and hence ensure manufacturing of cells with known quality, efficacy and stability.


Category: Journal Article
PubMed ID: #26523674 DOI: 10.1016/j.scr.2015.09.013
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2015-02-20 Entry Last Modified: 2019-11-17
Feedback
-
-