• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Transfusion 2017 Dec;57(12):2995-3000

Analysis of Argonaute 2-microRNA complexes in ex vivo stored red blood cells.

Vu L, Ragupathy V, Kulkarni S, Atreya C


BACKGROUND: Human enucleated mature red blood cells (RBCs) contain both mature microRNAs (miRNAs) and mRNAs, and we have previously correlated RBC storage lesion processes such as eryptosis, adenosine 5'-triphosphate loss, and RBC indices with differentially expressed miRNAs. Here we have characterized Argonaute 2 (AGO2)-miRNA complexes in stored mature RBCs as a first step toward understanding their role, if any. STUDY DESIGN AND METHODS: In this report AGO2-bound miRNAs in mature RBCs isolated from RBCs collected from three different healthy donors and stored for 24 hours at 4 to 6°C were identified by anti-AGO2 immunoprecipitation (IP) followed by next-generation sequencing of the RNA isolated from the IP. The data were analyzed by various bioinformatics tools. RESULTS: The analysis highlighted 28 mature AGO2-bound miRNAs that are common to all three donors, representing 95.6% of the identified miRNAs. Among these, miR-16-5p (20.6%), miR-451a-5p (16.7%), miR-486-5p (12.6%), and miR-92a-3p (12.6%) are the most abundant miRNAs. Functional enrichment analysis for mRNA targets of the 28 common miRNAs identified molecules related to various diseases, biofunctions, and toxicity functions such as cardio-, hepato-, and nephrotoxicity. CONCLUSION: Overall, these results demonstrate the existence of multiple intracellular AGO2-bound miRNAs in 24-hour-stored RBCs and warrant further experiments to determine whether AGO2-miRNAs are functional in RBCs.

Category: Journal Article
PubMed ID: #28940437 DOI: 10.1111/trf.14325
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2017-08-19 Entry Last Modified: 2017-12-31