• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Pathog Dis 2018 Oct 1;76(7):fty067

Sequence comparison of Francisella tularensis LVS, LVS-G, and LVS-R.

Kurtz SL, Voskanian-Kordi A, Simonyan V, Elkins KL

Abstract

Francisella tularensis is a gram-negative organism found in many regions of the world. F. tularensis can cause a fatal, febrile illness, although these natural tularemia infections are rare in the United States. However, the development of F. tularensis as a potential weapon of bioterrorism during the Cold War spurred the development of a live attenuated vaccine, LVS, from F. tularensis subsp. holarctica in the 1960s. Two colony morphology variants, LVS-G and LVS-R, were generated from parental LVS by plate passage and by acridine orange mutagenesis, respectively. In vaccinated mice, LVS-G and LVS-R exhibit altered immunogenicity and protective capacities. While the exact nature of the mutations in these strains was unknown, previous studies indicated that both had altered lipopolysaccharide structures. To better understand the impact of these mutations on LVS' immunogenicity, we sequenced the genomes of LVS-G and LVS-R as well as our parental laboratory stock of LVS, originally obtained from ATCC, and compared these to the F. tularensis subsp. holarctica LVS genome currently deposited in GenBank. The results indicate that the genomic sequence of ATCC LVS is nearly identical to that of the human LVS vaccine. Furthermore, a limited number of genomic mutations likely account for the phenotypes of LVS-G and LVS-R.


Category: Journal Article
PubMed ID: #30137434 DOI: 10.1093/femspd/fty067
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2018-01-28 Entry Last Modified: 2018-12-30
Feedback
-
-