• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Sci Rep 2020 Jun 12;10(1):9598

Antigen discovery, bioinformatics and biological characterization of novel immunodominant Babesia microti antigens.

Verma N, Puri A, Essuman E, Skelton R, Anantharaman V, Zheng H, White S, Gunalan K, Takeda K, Bajpai S, Lepore TJ, Krause PJ, Aravind L, Kumar S


Babesia microti is an intraerythrocytic parasite and the primary causative agent of human babesiosis. It is transmitted by Ixodes ticks, transfusion of blood and blood products, organ donation, and perinatally. Despite its global public health impact, limited progress has been made to identify and characterize immunodominant B. microti antigens for diagnostic and vaccine use. Using genome-wide immunoscreening, we identified 56 B. microti antigens, including some previously uncharacterized antigens. Thirty of the most immunodominant B. microti antigens were expressed as recombinant proteins in E. coli. Among these, the combined use of two novel antigens and one previously described antigen provided 96% sensitivity and 100% specificity in identifying B. microti antibody containing sera in an ELISA. Using extensive computational sequence and bioinformatics analyses and cellular localization studies, we have clarified the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens. Notably, we found that the BMN-family antigens are not monophyletic as currently annotated, but rather can be categorized into two evolutionary unrelated groups of BMN proteins respectively defined by two structurally distinct classes of extracellular domains. Our studies have enhanced the repertoire of immunodominant B. microti antigens, and assigned potential biological function to these antigens, which can be evaluated to develop novel assays and candidate vaccines.

Category: Journal Article
PubMed ID: #32533024 DOI: 10.1038/s41598-020-66273-6
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2020-06-21 Entry Last Modified: 2020-07-19