• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

J Mol Diagn 2014 Jan;16(1):136-44

Multiplex Screening for Blood-Borne Viral, Bacterial, and Protozoan Parasites using an OpenArray Platform.

Grigorenko E, Fisher C, Patel S, Chancey C, Rios M, Nakhasi HL, Duncan RC

Abstract

The use of nucleic acid tests for detection of pathogens has improved the safety of blood products. However, ongoing pathogen emergence demonstrates a need for development of devices testing for multiple pathogens simultaneously. One approach combines two proven technologies: Taqman chemistry for target identification and quantification and the OpenArray nanofluidic real-time PCR platform for spatial multiplexing of assays. A panel of Taqman assays was developed to detect nine blood-borne pathogens (BBPs): four viral, two bacterial, and three protozoan parasites. The custom BBP OpenArray plate with 18 assays was tested for specificity and analytical sensitivity for nucleic acid from each purified pathogen and with pathogen-spiked human blood and plasma samples. For most targets, the limits of detection (10 to 10,000 copies/mL) were comparable with existing real-time platforms. The testing of the BBP OpenArray with pathogen-spiked coded human plasma or blood samples and negative control specimens demonstrated no false-positive results among the samples tested and correctly identified pathogens with the lowest concentration detected ranging from 10 cells/mL (Trypanosoma cruzi) to 10,000 cells/mL (Escherichia coli). These results represent a proof of concept that indicated the BBP OpenArray platform in combination with Taqman chemistry may provide a multiplex real-time PCR pathogen detection method that points the way for a next-generation platform for infectious disease testing in blood.


Category: Journal Article
PubMed ID: #24184228 DOI: 10.1016/j.jmoldx.2013.08.002
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2012-12-03 Entry Last Modified: 2014-01-29
Feedback
-
-