• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Microb Drug Resist 2013 Jun;19(3):175-84

Antimicrobial Resistance Genes in Multidrug-Resistant Salmonella enterica Isolated from Animals, Retail Meats, and Humans in the United States and Canada.

Glenn LM, Lindsey RL, Folster JP, Pecic G, Boerlin P, Gilmour MW, Harbottle H, Zhao S, McDermott PF, Fedorka-Cray PJ, Frye JG

Abstract

Salmonella enterica is a prevalent foodborne pathogen that can carry multidrug resistance (MDR) and pose a threat to human health. Identifying the genetics associated with MDR in Salmonella isolated from animals, foods, and humans can help determine sources of MDR in food animals and their impact on humans. S. enterica serovars most frequently carrying MDR from healthy animals, retail meats, and human infections in the United States and Canada were identified and isolates resistant to the largest number of antimicrobials were chosen. Isolates were from U.S. slaughter (n=12), retail (9), and humans (9), and Canadian slaughter (9), retail (9), and humans (8; total n=56). These isolates were assayed by microarray for antimicrobial resistance and MDR plasmid genes. Genes detected encoded resistance to aminoglycosides (alleles of aac, aad, aph, strA/B); beta-lactams (blaTEM, blaCMY, blaPSE-1); chloramphenicol (cat, flo, cmlA); sulfamethoxazole (sulI); tetracycline (tet(A, B, C, D) and tetR); and trimethoprim (dfrA). Hybridization with IncA/C plasmid gene probes indicated that 27/56 isolates carried one of these plasmids; however, they differed in several variable regions. Cluster analysis based on genes detected separated most of the isolates into two groups, one with IncA/C plasmids and one without IncA/C plasmids. Other plasmid replicons were detected in all but one isolate, and included I1 (25/56), N (23/56), and FIB (10/56). The presence of different mobile elements along with similar resistance genes suggest that these genetic elements may acquire similar resistance cassettes, and serve as multiple sources for MDR in Salmonella from food animals, retail meats, and human infections.


Category: Journal Article
PubMed ID: #23350745 DOI: 10.1089/mdr.2012.0177
Includes FDA Authors from Scientific Area(s): Animal and Veterinary
Entry Created: 2013-07-01 Entry Last Modified: 2014-01-05
Feedback
-
-