• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Gut 2018 Mar;67(3):521-33

Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues.

Zhang M, Lykke-Andersen S, Zhu B, Xiao W, Hoskins JW, Zhang X, Rost LM, Collins I, Bunt MV, Jia J, Parikh H, Zhang T, Song L, Jermusyk A, Chung CC, Zhu B, Zhou W, Matters GL, Kurtz RC, Yeager M, Jensen TH, Brown KM, Ongen H, Bamlet WR, Murray BA, McCarthy MI, Chanock SJ, Chatterjee N, Wolpin BM, Smith JP, Olson SH, Petersen GM, Shi J, Amundadottir L

Abstract

OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p


Category: Journal Article
PubMed ID: #28634199 DOI: 10.1136/gutjnl-2016-313146
PubMed Central ID: #PMC5762429
Includes FDA Authors from Scientific Area(s): Toxicological Research
Entry Created: 2017-06-25 Entry Last Modified: 2018-04-01
Feedback
-
-