• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Pharm Res 2016 Apr;33(4):909-21

Absorption and clearance of pharmaceutical aerosols in the human nose: effects of nasal spray suspension particle size and properties.

Rygg A, Hindle M, Longest PW

Abstract

PURPOSE: The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. METHODS: Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. RESULTS: Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 mum did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. CONCLUSIONS: The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.


Category: Journal Article
PubMed ID: #26689412 DOI: 10.1007/s11095-015-1837-5
Includes FDA Authors from Scientific Area(s): Drugs
Entry Created: 2017-07-25
Feedback
-
-