• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Sci Rep 2020 Feb 20;10(1):3032

Preclinical development of a fusion peptide conjugate as an HIV vaccine immunogen.

Ou L, Kong WP, Chuang GY, Ghosh M, Gulla K, O'Dell S, Varriale J, Barefoot N, Changela A, Chao CW, Cheng C, Druz A, Kong R, McKee K, Rawi R, Sarfo EK, Schon A, Shaddeau A, Tsybovsky Y, Verardi R, Wang S, Wanninger TG, Xu K, Yang GJ, Zhang B, Zhang Y, Zhou T, The VRC Production Program, Arnold FJ, Doria-Rose NA, Lei QP, Ryan ET, Vann WF, Mascola JR, Kwong PD


The vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) - when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) - to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge. Here we report the preclinical development of recombinant tetanus toxoid heavy chain fragment (rTTHC) linked to FP8 (FP8-rTTHC) as a suitable FP-conjugate vaccine immunogen. We assessed 16 conjugates, made by coupling the 4 most prevalent FP8 sequences with 4 carrier proteins: the aforementioned KLH and rTTHC; the H. influenzae protein D (HiD); and the cross-reactive material from diphtheria toxin (CRM197). While each of the 16 FP8-carrier conjugates could elicit HIV-1-neutralizing responses, rTTHC conjugates induced higher FP-directed responses overall. A Sulfo-SIAB linker yielded superior results over an SM(PEG)2 linker but combinations of carriers, conjugation ratio of peptide to carrier, or choice of adjuvant (Adjuplex or Alum) did not significantly impact elicited FP-directed neutralizing responses in mice. Overall, SIAB-linked FP8-rTTHC appears to be a promising vaccine candidate for advancing to clinical assessment.

Category: Journal Article
PubMed ID: #32080235 DOI: 10.1038/s41598-020-59711-y
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2020-02-23