• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Neuroscience 2004;128(2):281-91

Proteasomal inhibition induced by anganeseethylene-bis-dithiocarbamate: Relevance to parkinson's disease.

Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J

Abstract

Maneb, a widely used fungicide, has been associated with Parkinsonism in humans. In experimental models, maneb and its major active element, manganese ethylene-bis-dithiocarbamate (Mn-EBDC) cause selective nigrostriatal neurodegeneration in mice and in rats, respectively. To investigate the mechanisms underlying this neurodegeneration, we studied the effects of Mn-EBDC on proteasomal function, which is decreased in patients with Parkinson's disease (PD), in a dopaminergic neuronal cell line (MES 23.5 or MES). The results demonstrated that exposure of MES cells to 6 microM Mn-EBDC for 7 days produced not only significant neurotoxicity but also inhibition of proteasomal chymotrypsin-like and postglutamyl peptidase activities. Proteasomal dysfunction was accompanied by formation of cytoplasmic inclusions that were positive for alpha-synuclein immunostaining and significantly increased sodium dodecyl sulfate-insoluble alpha-synuclein aggregation seen by Western blot analysis. In addition, there was a significant increase in oxidative stress, evidenced by elevated total protein carbonyl content, in cells treated with Mn-EBDC. Manipulation of intracellular reduced glutathione levels with N-acetyl-l-cysteine or l-buthionine sulfoximine pretreatment to modulate Mn-EBDC-mediated oxidative stress altered Mn-EBDC-mediated neurotoxicity, proteasomal dysfunction, and alpha-synuclein aggregation in these cells. These data suggest that neurotoxicity-induced by Mn-EBDC is at least partially attributable to Mn-EBDC-mediated proteasomal inhibition, and that the proteasome may be an important target by which environmental exposure modifies the risk for developing PD in vulnerable populations.


Category: Journal Article, Peer
PubMed ID: #15350641
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29
Feedback
-
-