• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Antioxid Redox Signal 2004 Dec;6(6):1000-1010

Oxygen sensing in the circulation: "cross talk" between red blood cells and the vasculature.

Buehler PW, Alayash AI

Alayash AI, US FDA, CBER, NIH, Lab Biochem & Vasc Biol,Div Hematol, Bldg 29,Room 112,8800 Rockville Pike, Bethesda, MD 20892 USA US FDA, CBER, NIH, Lab Biochem & Vasc Biol,Div Hematol, Bethesda, MD 20892 USA

Abstract

Oxygen (O(2)) sensing in blood and regulation of microvascular tone appear to involve hemoglobin (Hb) conformational changes resulting from O(2) desaturation. This observation has prompted the thought that Hb functions as both an O(2) sensor and regulator of microvasular blood flow to meet local tissue oxygen demand. The mechanism(s) by which this is accomplished has recently been the subject of increasing debate. Three primary hypotheses are described within the literature and include release of adenosine 5'-triphosphate by red blood cells (RBCs), release of S-nitrosylated molecules from RBCs originally bound to beta93 cysteine residues of oxyHb, and nitrite conversion and storage of nitric oxide by Hb at the site of ferric (Fe(3+)) and ferrous (Fe(2+)) Hb. Within extravascular cells, the global regulator of oxygen homeostasis is hypoxia-inducible factor-1 (HIF- 1). This transcriptional factor is tightly regulated by O(2) and cellular redox-sensitive mechanisms. HIF-1 activation is responsible for the up-regulation of proteins, which increase O(2) supply. We believe that there are important and yet unexplored mechanisms by which RBCs can directly or indirectly communicate via redox intermediates with extravascular sites as part of the global O(2) sensing mechanism. Antioxid. Redox Signal. 6, 1000-1010.


Category: Journal Article, Review
PubMed ID: #15548897
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29
Feedback
-
-